Sponsored Links

Sabtu, 23 Desember 2017

Sponsored Links

The Concept of Trig. Substitution - YouTube
src: i.ytimg.com

In mathematics, Trigonometric substitution is the substitution of trigonometric functions for other expressions. One may use the trigonometric identities to simplify certain integrals containing radical expressions:

Substitution 1. If the integrand contains a2 - x2, let

x = a sin ? {\displaystyle x=a\sin \theta }

and use the identity

1 - sin 2 ? = cos 2 ? . {\displaystyle 1-\sin ^{2}\theta =\cos ^{2}\theta .}

Substitution 2. If the integrand contains a2 + x2, let

x = a tan ? {\displaystyle x=a\tan \theta }

and use the identity

1 + tan 2 ? = sec 2 ? . {\displaystyle 1+\tan ^{2}\theta =\sec ^{2}\theta .}

Substitution 3. If the integrand contains x2 - a2, let

x = a sec ? {\displaystyle x=a\sec \theta }

and use the identity

sec 2 ? - 1 = tan 2 ? . {\displaystyle \sec ^{2}\theta -1=\tan ^{2}\theta .}


Video Trigonometric substitution



Examples

Integrals containing a2 - x2

In the integral

? d x a 2 - x 2 {\displaystyle \int {\frac {\mathrm {d} x}{\sqrt {a^{2}-x^{2}}}}}

we may use

x = a sin ( ? ) , d x = a cos ( ? ) d ? , ? = arcsin ( x a ) {\displaystyle x=a\sin(\theta ),\quad \mathrm {d} x=a\cos(\theta )\,\mathrm {d} \theta ,\quad \theta =\arcsin \left({\frac {x}{a}}\right)}
? d x a 2 - x 2 = ? a cos ( ? ) d ? a 2 - a 2 sin 2 ( ? ) = ? a cos ( ? ) d ? a 2 ( 1 - sin 2 ( ? ) ) = ? a cos ( ? ) d ? a 2 cos 2 ( ? ) = ? d ? = ? + C = arcsin ( x a ) + C {\displaystyle {\begin{aligned}\int {\frac {\mathrm {d} x}{\sqrt {a^{2}-x^{2}}}}&=\int {\frac {a\cos(\theta )\,\mathrm {d} \theta }{\sqrt {a^{2}-a^{2}\sin ^{2}(\theta )}}}\\&=\int {\frac {a\cos(\theta )\,\mathrm {d} \theta }{\sqrt {a^{2}(1-\sin ^{2}(\theta ))}}}\\&=\int {\frac {a\cos(\theta )\,\mathrm {d} \theta }{\sqrt {a^{2}\cos ^{2}(\theta )}}}\\&=\int \mathrm {d} \theta \\&=\theta +C\\&=\arcsin \left({\tfrac {x}{a}}\right)+C\end{aligned}}}

Note that the above step requires that a > 0 and cos(?) > 0; we can choose the a to be the positive square root of a2; and we impose the restriction on ? to be -?/2 < ? < ?/2 by using the arcsin function.

For a definite integral, one must figure out how the bounds of integration change. For example, as x goes from 0 to a/2, then sin(?) goes from 0 to 1/2, so ? goes from 0 to ?/6. Then we have

? 0 a 2 d x a 2 - x 2 = ? 0 ? 6 d ? = ? 6 . {\displaystyle \int _{0}^{\frac {a}{2}}{\frac {\mathrm {d} x}{\sqrt {a^{2}-x^{2}}}}=\int _{0}^{\frac {\pi }{6}}\mathrm {d} \theta ={\tfrac {\pi }{6}}.}

Some care is needed when picking the bounds. The integration above requires that -?/2 < ? < ?/2, so ? going from 0 to ?/6 is the only choice. If we had missed this restriction, we might have picked ? to go from ? to 5?/6, which would give us the negative of the result.

Integrals containing a2 + x2

In the integral

? d x a 2 + x 2 {\displaystyle \int {\frac {\mathrm {d} x}{a^{2}+x^{2}}}}

we may write

x = a tan ( ? ) , d x = a sec 2 ( ? ) d ? , ? = arctan ( x a ) {\displaystyle x=a\tan(\theta ),\quad \mathrm {d} x=a\sec ^{2}(\theta )\,\mathrm {d} \theta ,\quad \theta =\arctan \left({\tfrac {x}{a}}\right)}

so that the integral becomes

? d x a 2 + x 2 = ? a sec 2 ( ? ) d ? a 2 + a 2 tan 2 ( ? ) = ? a sec 2 ( ? ) d ? a 2 ( 1 + tan 2 ( ? ) ) = ? a sec 2 ( ? ) d ? a 2 sec 2 ( ? ) = ? d ? a = ? a + C = 1 a arctan ( x a ) + C {\displaystyle {\begin{aligned}\int {\frac {\mathrm {d} x}{a^{2}+x^{2}}}&=\int {\frac {a\sec ^{2}(\theta )\,\mathrm {d} \theta }{a^{2}+a^{2}\tan ^{2}(\theta )}}\\&=\int {\frac {a\sec ^{2}(\theta )\,\mathrm {d} \theta }{a^{2}(1+\tan ^{2}(\theta ))}}\\&=\int {\frac {a\sec ^{2}(\theta )\,\mathrm {d} \theta }{a^{2}\sec ^{2}(\theta )}}\\&=\int {\frac {\mathrm {d} \theta }{a}}\\&={\tfrac {\theta }{a}}+C\\&={\tfrac {1}{a}}\arctan \left({\tfrac {x}{a}}\right)+C\end{aligned}}}

(provided a ? 0).

Integrals containing x2 - a2

Integrals like

? d x x 2 - a 2 {\displaystyle \int {\frac {\mathrm {d} x}{x^{2}-a^{2}}}}

should be done by partial fractions rather than trigonometric substitutions. However, the integral

? x 2 - a 2 d x {\displaystyle \int {\sqrt {x^{2}-a^{2}}}\,\mathrm {d} x}

can be done by substitution:

x = a sec ( ? ) , d x = a sec ( ? ) tan ( ? ) d ? , ? = arcsec ( x a ) {\displaystyle x=a\sec(\theta ),\quad \mathrm {d} x=a\sec(\theta )\tan(\theta )\,\mathrm {d} \theta ,\quad \theta =\operatorname {arcsec} \left({\tfrac {x}{a}}\right)}
? x 2 - a 2 d x = ? a 2 sec 2 ( ? ) - a 2 ? a sec ( ? ) tan ( ? ) d ? = ? a 2 ( sec 2 ( ? ) - 1 ) ? a sec ( ? ) tan ( ? ) d ? = ? a 2 tan 2 ( ? ) ? a sec ( ? ) tan ( ? ) d ? = ? a 2 sec ( ? ) tan 2 ( ? ) d ? = a 2 ? sec ( ? ) ( sec 2 ( ? ) - 1 ) d ? = a 2 ? ( sec 3 ( ? ) - sec ( ? ) ) d ? . {\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,\mathrm {d} x&=\int {\sqrt {a^{2}\sec ^{2}(\theta )-a^{2}}}\cdot a\sec(\theta )\tan(\theta )\,\mathrm {d} \theta \\&=\int {\sqrt {a^{2}(\sec ^{2}(\theta )-1)}}\cdot a\sec(\theta )\tan(\theta )\,\mathrm {d} \theta \\&=\int {\sqrt {a^{2}\tan ^{2}(\theta )}}\cdot a\sec(\theta )\tan(\theta )\,\mathrm {d} \theta \\&=\int a^{2}\sec(\theta )\tan ^{2}(\theta )\,\mathrm {d} \theta \\&=a^{2}\int \sec(\theta )(\sec ^{2}(\theta )-1)\,\mathrm {d} \theta \\&=a^{2}\int (\sec ^{3}(\theta )-\sec(\theta ))\,\mathrm {d} \theta .\end{aligned}}}

We can then solve this using the formula for the integral of secant cubed.


Maps Trigonometric substitution



Substitutions that eliminate trigonometric functions

Substitution can be used to remove trigonometric functions. In particular, see Tangent half-angle substitution.

For instance,

? f ( sin ( x ) , cos ( x ) ) d x = ? 1 ± 1 - u 2 f ( u , ± 1 - u 2 ) d u u = sin ( x ) ? f ( sin ( x ) , cos ( x ) ) d x = ? 1 ? 1 - u 2 f ( ± 1 - u 2 , u ) d u u = cos ( x ) ? f ( sin ( x ) , cos ( x ) ) d x = ? 2 1 + u 2 f ( 2 u 1 + u 2 , 1 - u 2 1 + u 2 ) d u u = tan ( x 2 ) ? cos x ( 1 + cos x ) 3 d x = ? 2 1 + u 2 1 - u 2 1 + u 2 ( 1 + 1 - u 2 1 + u 2 ) 3 d u = ? ( 1 - u 2 ) ( 1 + u 2 ) d u {\displaystyle {\begin{aligned}\int f(\sin(x),\cos(x))\,\mathrm {d} x&=\int {\frac {1}{\pm {\sqrt {1-u^{2}}}}}f\left(u,\pm {\sqrt {1-u^{2}}}\right)\,\mathrm {d} u&&u=\sin(x)\\\int f(\sin(x),\cos(x))\,\mathrm {d} x&=\int {\frac {1}{\mp {\sqrt {1-u^{2}}}}}f\left(\pm {\sqrt {1-u^{2}}},u\right)\,\mathrm {d} u&&u=\cos(x)\\\int f(\sin(x),\cos(x))\,\mathrm {d} x&=\int {\frac {2}{1+u^{2}}}f\left({\frac {2u}{1+u^{2}}},{\frac {1-u^{2}}{1+u^{2}}}\right)\,\mathrm {d} u&&u=\tan \left({\tfrac {x}{2}}\right)\\\int {\frac {\cos x}{(1+\cos x)^{3}}}\,\mathrm {d} x&=\int {\frac {2}{1+u^{2}}}{\frac {\frac {1-u^{2}}{1+u^{2}}}{\left(1+{\frac {1-u^{2}}{1+u^{2}}}\right)^{3}}}\,\mathrm {d} u=\int (1-u^{2})(1+u^{2})\,\mathrm {d} u\end{aligned}}}

7.3 Integration by Using Trigonometric Substitution as a Tool ...
src: i.ytimg.com


Hyperbolic substitution

Substitutions of hyperbolic functions can also be used to simplify integrals.

In the integral ? 1 a 2 + x 2 d x {\displaystyle \int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,\mathrm {d} x} , make the substitution x = a sinh u {\displaystyle x=a\sinh {u}} , d x = a cosh u d u {\displaystyle \mathrm {d} x=a\cosh {u}\,\mathrm {d} u} .

Then, using the identities cosh 2 ( x ) - sinh 2 ( x ) = 1 {\displaystyle \cosh ^{2}(x)-\sinh ^{2}(x)=1} and sinh - 1 x = ln ( x + x 2 + 1 ) {\displaystyle \sinh ^{-1}{x}=\ln(x+{\sqrt {x^{2}+1}})} ,

? 1 a 2 + x 2 d x = ? a cosh u a 2 + a 2 sinh 2 u d u = ? a cosh u a 1 + sinh 2 u d u = ? a cosh u a cosh u d u = u + C = sinh - 1 x a + C = ln ( x 2 a 2 + 1 + x a ) + C = ln ( x 2 + a 2 + x a ) + C {\displaystyle {\begin{aligned}\int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,\mathrm {d} x&=\int {\frac {a\cosh {u}}{\sqrt {a^{2}+a^{2}\sinh ^{2}{u}}}}\,\mathrm {d} u\\&=\int {\frac {a\cosh {u}}{a{\sqrt {1+\sinh ^{2}{u}}}}}\,\mathrm {d} u\\&=\int {\frac {a\cosh {u}}{a\cosh {u}}}\,\mathrm {d} u\\&=u+C\\&=\sinh ^{-1}{\frac {x}{a}}+C\\&=\ln \left({\sqrt {{\frac {x^{2}}{a^{2}}}+1}}+{\frac {x}{a}}\right)+C\\&=\ln \left({\frac {{\sqrt {x^{2}+a^{2}}}+x}{a}}\right)+C\end{aligned}}}


ðŸ
src: i.ytimg.com


See also

  • Tangent half-angle substitution

Calculus 2 - 7.3 Trigonometric Substitution (Part 1 of 2) - YouTube
src: i.ytimg.com


References

Source of the article : Wikipedia

Comments
0 Comments